今天来聊聊关于在等腰三角形abc中ab等于ac,在等腰三角形abc中ab等于ac等于1的文章,现在就为大家来简单介绍下在等腰三角形abc中ab等于ac,在等腰三角形abc中ab等于ac等于1,希望对各位小伙伴们有所帮助。
1、以M为原点,AD为x轴建立直角坐标系,则A(-sina,0),C(0,cosa),B(0,-cosa),设P(p,0),-sina
2、向量PQ=(-p+icosa)(cos2a-isin2a)=-pcos2a+cosasin2a+i(psin2a+cosacos2a),向量MQ=MP+PQ=p-pcos2a+cosasin2a+i(psin2a+cosacos2a),∴Q(p-pcos2a+cosasin2a,psin2a+cosacos2a),由向量BQ∥BD得(p-pcos2a+cosasin2a)/d=(psin2a+cosacos2a+cosa)/cosa,∴d=cosa(p-pcos2a+cosasin2a)/(psin2a+cosacos2a+cosa),由PQ=DQ得2xQ=xP+xD,即2(p-pcos2a+cosasin2a)=p+cosa(p-pcos2a+cosasin2a)/(psin2a+cosacos2a+cosa),∴(p-2pcos2a+2cosasin2a)(psin2a+cosacos2a+cosa)=cosa(p-pcos2a+cosasin2a),sin2a(1-2cos2a)p^+p[2cosa(sin2a)^+cosa(1+cos2a)(1-2cos2a)]+2cos^asin2a(1+cos2a)=pcosa(1-cos2a)+cos^asin2a,∴sin2a(1-2cos2a)p^+pcosa[2(sin2a)^+2(1+cos2a)(1-2cos2a)-1+cos2a]+cos^a(sin2a+2sin2acos2a)=0,两边约去cosa,化简得2sina(1-2cos2a)p^+p[2(cos2a)^-cos2a+3]+cosa(sin2a+2sin2acos2a)=0,解这个关于p的方程,就可以|PM|=-p.繁!。
相信通过在等腰三角形abc中ab等于ac等于1这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。