关于【边缘计算技术前景】,今天向乾小编给您分享一下,如果对您有所帮助别忘了关注本站哦。
内容导航:1、边缘计算技术前景:科技云报道:边缘计算步入“黄金年代”2、边缘计算技术前景,边缘计算技术简介1、边缘计算技术前景:科技云报道:边缘计算步入“黄金年代”
当前时点,AI大模型已经站在了从“玩具”向“工具”快速演化的关键迭代期。如何让大模型渗透进入各类垂直场景,如何更低成本的使用大模型,如何让更多场景与用户接触AI,成为了发展的下一个重点。
在AI向实际场景落地时,边缘计算的重要性加速凸显,边缘计算在成本、时延、隐私上具有天然优势,也可以作为桥梁,预处理海量复杂需求,并将其导向大模型。边缘计算作为AI触及万千场景的血管地位加速明晰。
2030年全球潜在市场规模4450亿美元
Gartner将边缘计算定义为“一种分布式计算技术,在靠近信息产生和消费的(物理和网络)位置,提供信息处理的计算能力”。
随着云计算从一个中心点逐渐延伸、下沉到边缘,边缘计算就崛起为主角,分布在包括骨干网节点、城际网节点、汇聚网节点、接入网节点,以及无数业务现场计算节点中,越来越多原本在云中运行的软件也可以运行边缘端版本。
值得一提的是,边缘节点更接近用户终端装置,可以加快资料的处理和传送速度,减少延迟。在这种架构下,知识的产生和资料的分析,更接近于数据资料的来源,因此更适合处理大数据。
与云计算相比,边缘计算的优势更加明显。边缘计算不仅减轻了网络带宽和数据中心功耗的压力,还减少了系统延迟,增强了服务响应的能力,同时还降低了数据泄露的风险,保护了用户的数据安全和隐私。
从市场规模来看,根据STL Partners边缘计算关键数据统计,2030年全球边缘计算潜在市场规模将达到4450亿美元,10年复合增长率为48%。
价值链的所有部分(设备、连接、应用程序、集成和支持以及边缘基础设施)都将在此预测期内增长。其中,媒体、运输和制造业垂直市场将占边缘市场的84%。到2026年,全球26%的网络边缘站点将位于中国。
随着智能终端、智能应用的广泛普及,边缘计算正在步入发展的“黄金年代”。随着全面AI时代来临,算力需求将会呈现指数级增长,同时算力的需求也走向多样化,单一云计算已经无法满足所有的需求,因此边缘算力重要性会进一步凸显。
其次,边缘计算技术的发展得到政策大力支持,促使边缘计算技术的日渐成熟。第三,边缘算力较云端算力,拥有低成本、高隐私以及低时延等三大优势,可以充分利用本地计算机算力,同时与云端进行协同,通过云端来补充本地不足的算力,而且其适应的场景也非常多。
梳理边缘计算市场上的主流玩家,大致可以分为四类:第一类,以新华三、联想集团等为代表的ICT厂商,将基础软硬件及技术服务同边缘计算场景融合,实现软硬一体的边缘计算私有化部署,并力推云网融合,从而达到5G云化网络与边缘计算的充分结合,以满足各类行业智能化应用所急需的新型边缘侧高性能网络与计算资源。
第二类,以亚马逊、百度、阿里为代表的公有云厂商,将云计算能力向设备和用户侧延伸,扩充云数据中心的外延,将云原生的统一编程模式通过边缘网关的能力应用到设备构成的边缘云,主打云边协同一体化。
第三类和第四类,分别以中国移动、中国联通和西门子、苹果为代表,前者通过提供基站的边缘计算服务及5G网络接入管理,后者则以设备侧的边缘基础设施为中心,逐渐辐射到远端的数据中心,将一些边缘侧无法完成的任务提交到云端完成。
众多科技巨头的入局,推动着边缘计算整体产业和生态的日趋成熟,使边缘计算已经成为提升信息化发展水平、打造数字经济新动能的重要支撑。在边缘计算需求激增下,“云边端一体化”为核心的云边协同成为边缘计算未来重要的演进方向。
云边端一体化旨在屏蔽云、边、端分布式异构基础设施资源,实现资源统一管理、数据自由流通、应用一致运行环境、立体安全保障,满足用户多样化、实时敏捷、安全可靠业务需求。
在万物互联和行业智能化双重环境的催生下,云边端一体化有利于将算力下沉到更接近数据产生的现场,同时拥有更低的时延、更低的带宽占用、更低的部署成本,以及更加安全可靠的数据传输等优势,更好地满足企业智能化转型的需求。
由此不难判断,在产业数字化升级背景下,云边端一体化的加速演进,将进一步提升数据处理效率,避免延迟,强化敏捷性,让边缘计算的优势得到更大的展现,成为企业数字化、智能化转型的优选项。
边缘计算不再“边缘”
2022年8月,我国率先迎来了“物超人”的历史性时刻,即物联网连接数超越了人联网连接数,此外,根据IHS的预测,到2030年互联设备的数量将超过750亿个。
全球数字经济爆发式增长所带来的丰富场景以及上亿规模的联网设备量在网络边缘侧产生了大量的数据处理需求,可以说,产业端的实际痛点与需求为边缘智能提供了优渥的成长土壤。
同时,在政策方面,国务院在2022年年初发布的《“十四五”数字经济发展规划》中明确提出要加强面向特定场景的边缘计算能力,强化算力统筹和智能调度。
随后,各省市相继出台多项政策支持边缘计算产业发展,边缘计算开始不再“边缘”,逐渐走到了数字经济的主舞台。
所谓的“边”是相对于“中心”的概念,指的是贴近数据源头的区域。而边缘智能则是通过将AI处理能力下沉至更贴近数据源头的网络边缘侧,就近提供智能化服务,从而满足当前市场对实时性、隐私性、节省带宽等方面的需求。
一直以来,AI作为数据分析、智能决策的基础在云端大展拳脚,工作环境一般是在相对“舒适”的机房、数据中心内,相反,更加贴近应用现场的边缘侧则是专干“苦活累活”,往往处于恶劣的工作环境之中,例如工厂、室外,需要面临稳定性、安全性等不同维度的考验。
同时,恶劣的工作环境也为边缘架构部署提出了新的要求,如何在现场快速抓取数据、进行训练并下发到设备上至关重要。
如今,当边缘计算升级至边缘智能,在新一轮的数字化浪潮中,边缘侧开始承接更重要的“智能任务”,责任与挑战并行,在深化应用的过程中,一以贯之的边缘方案已经难以适应不同部署环境、不同需求的丰富场景了。
所以,面对严重碎片化的边缘应用,能够自学习、自迭代的行业解决方案才是良方,既能够满足数据安全,同时还能在保障AI能力的同时实现快速部署。
边缘智能打开市场想象空间
对于边缘计算领域的未来发展前景,AI和边缘计算的结合,打开市场更大想象空间。AI为边缘计算提供解决问题的技术和方案,而边缘计算可以为AI提供释放潜力的平台。
边缘智能为AI应用程序提供支持,比如在自动驾驶、智慧城市、智能家居等场景下,更多的数据由边缘网络设备创建。
6月7日,英伟达在官微宣布,在2023上海国际嵌入式展中,英伟达将展示适用于自主机器和诸多其它嵌入式应用的NVIDIA Jetson边缘计算平台,并带来生态合作伙伴基于相关软硬件在交通、工业、机器人等多个垂直行业领域所构建的解决方案。
英伟达Jetson边缘计算平台涵盖了机器人、自动驾驶、工业制造、智慧城市等边缘AI的主要应用场景。
届时,英伟达将展出NVIDIA Jetson系列模组、NVIDIA Jetson系列开发者套件、NVIDIA Isaac Sim机器人开发平台、Jetson AGX Orin驱动的自动驾驶、车路协同与道路巡检系统、智慧城市边缘视频分析系统、智能制造边缘计算方案、由Jetson驱动的新一代自主机器等产品及解决方案。
这其中,在机器人领域,NVIDIA Isaac Sim由Omniverse提供动力支持,是一款可扩展的机器人仿真应用和合成数据生成工具,以便开发、测试和管理基于AI的机器人;此外,NVIDIA Jetson是开发机器人解决方案的理想平台,基于Jeston相关模组开发的机器人平台,具备尺寸小、重量轻和高防护的特点,能够适应更多类型的智能机器人产品。
自动驾驶领域,英伟达Jetson AGX Orin模块可提供最高275 TOPS的AI计算能力,性能提升高达8倍,以适应各类复杂场景;在交通场景下,基于Jetson开发的路侧边缘计算机能够实时分析复杂的交通场景,提升智能交通系统的运维管理效率。
在智能制造领域,英伟达Jetson可以将强大的AI推理计算能力带入工业场景,能够解决更复杂的问题。具体来说,使用GPU加速的AI视觉推理可以解决流水线上的缺陷检测、柔性制造等问题。
与英伟达共同发力边缘计算业务的还有通信巨头高通。高通此前曾宣布,公司将由通信公司转型为边缘计算公司。研究机构认为,未来物联网模组或将承载高通的边缘算力,为全世界开发者带来更高性价比的终端计算能力。
2、边缘计算技术前景,边缘计算技术简介
边缘计算的含义边缘计算是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的分布式开放平台,就近提供边缘智能服务,满足行业数字化在敏捷联接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。
边缘计算的特点1. 联接性
联接性是边缘计算的基础。所联接物理对象的多样性及应用场景的多样性,需要边缘计算具备丰富的联接功能,如各种网络接口、网络协议、网络拓扑、网络部署与配置、网络管理与维护。联接性需要充分借鉴吸收网络领域先进研究成果,如TSN、SDN、NFV、Network as a Service、WLAN、NB-IoT、5G等,同时还要考虑与现有各种工业总线的互联互通。
2. 数据第一入口
边缘计算作为物理世界到数字世界的桥梁,是数据的第一入口,拥有大量、实时、完整的数据,可基于数据全生命周期进行管理与价值创造,将更好的支撑预测性维护、资产效率与管理等创新应用;同时,作为数据第一入口,边缘计算也面临数据实时性、确定性、多样性等挑战。
3. 约束性
边缘计算产品需适配工业现场相对恶劣的工作条件与运行环境,如防电磁、防尘、防爆、抗振动、抗电流/电压波动等。在工业互联场景下,对边缘计算设备的功耗、成本、空间也有较高的要求。
4. 分布性
边缘计算实际部署天然具备分布式特征。这要求边缘计算支持分布式计算与存储、实现分布式资源的动态调度与统一管理、支撑分布式智能、具备分布式安全等能力。
5. 融合性
边缘计算作为运营技术与信息通信技术融合与协同的关键承载,需要支持在联接、数据、管理、控制、应用、安全等方面的协同。
产业现状边缘计算已经掀起产业化的热潮,各类产业组织、商业组织在积极发起和推进边缘计算的研究、标准、产业化活动。
2016年10月,由IEEE和ACM正式成立了IEEE/ACM Symposium on Edge Computing,组成了由学术界、产业界、政府(美国国家基金会)共同认可的学术论坛。
2016年11月华为技术有限公司、中国科学院沈阳自动化研究所、中国信息通信研究院、英特尔公司、ARM和软通动力信息技术(集团)有限公司联合倡议发起边缘计算产业联盟(Edge Computing Consortium,缩写为ECC)。ECC目前已成为业界聚焦边缘计算领域最大的联盟组织,联盟成员数量突破150家,包括华为、英特尔、ARM、博世、霍尼韦尔、ABB、施耐德、迅达、Infosys、三菱、和利时(HollySys)、McAfee、360、NI、OSISoft等业界知名厂商。为了促进边缘计算产业的蓬勃发展以及在行业的快速应用,ECC已经与多个产业组织建立了正式联系与合作,包括工业互联网联盟(IIC)、工业互联网产业联盟(AII)、中国自动化学会(CAA)、SDNFV产业联盟、Avnu Alliance、国际半导体照明联盟(ISA)、车载信息服务产业应用联盟(TIAA)等。
2017年,边缘计算在全球产业界掀起了新的浪潮:工业、ICT和互联网企业纷纷发布边缘计算产品与服务。工业互联网联盟(IIC)成立了边缘计算工作组;IEC计划发布边缘计算相关的白皮书;ISO/IEC JTC1成立了边缘计算研究小组。
边缘计算应用当前主要有三类典型应用场景(图1),其中互联网应用远程访问优化场景已经成熟应用,其他两种正在成为创新与应用的热点。
图1 三类典型应用场景
边缘计算框架图2 边缘计算参考架构
边缘计算的参考架构如图2所示,由智能服务层、业务Fabric、联接计算Fabric、边缘计算节点构成。智能服务层基于模型驱动的统一服务框架,通过开发服务框架和部署运营服务框架实现开发与部署智能协同,能够实现软件开发接口一致和部署运营自动化;业务Fabric通过智能业务编排定义端到端业务流,实现业务敏捷;联接计算Fabric实现架构极简,对业务屏蔽边缘智能分布式架构的复杂性,实现信息通信基础设施部署运营自动化和可视化,支撑边缘计算资源服务与行业业务需求的智能协同;边缘计算节点兼容多种异构联接、支持实时处理与响应、提供软硬一体化安全防护。
边缘计算参考架构在每层提供了模型化的开放接口,实现了架构的全层次开放;边缘计算参考架构通过纵向管理服务、数据全生命周期服务、安全服务,实现业务的全流程、全生命周期的智能服务。
边缘计算的应用边缘计算经历了从理论到实践的快速发展,架构与技术的核心理念已经实践落地。
1.梯联网
目前,全球有超过1500万部电梯在运行,每天乘电梯的人数达十亿人次。梯联网基于边缘计算,在边缘侧实时采集电梯的运行数据,进行数据预处理,并协同云端大数据分析平台,全面监控电梯各部件的“健康指标”;通过电梯预测性维护,提高维护效率,降低维护成本,降低最终客户OPEX;通过提供增值服务,支撑电梯制造商向服务商进行转型,打造新的利润增长点。
图3 梯联网方案总体架构图
2.智慧水务
城市供水系统是城市发展的基础实施,也是构筑安全城市、智慧城市的重要环节。智慧水务基于边缘计算平台,利用先进传感技术、网络技术、计算技术、控制技术、智能技术,对二次供水等设备全面感知,集成城市供水设备、信息系统和业务流程,实现多个系统间大范围、大容量数据的交互,从而进行全程控制,实现故障自诊断、可预测性维护,降低能耗,保证用水安全。
图4 智慧水务方案架构图
3.智能楼宇
智能楼宇利用先进传感技术、网络技术、计算技术、控制技术、智能技术、安全技术,通过对楼宇传感设备的数据采集、监控与分析,实现状态感知、故障告警和可预测性维护,通过多系统协同,实现自动控制和可视化运营,打造智能、绿色、高效的办公与生活环境。
图5 智能楼宇解决方案架构图
4.智慧照明
智慧照明通过对照明设备全面感知,实现路灯的远程、实时、自适应控制,实现故障自诊断、可预测性维护,同时,以灯杆为无线网络的接入节点,覆盖周边垃圾桶监测、停车传感器等设备,构建可扩展的城市物联网骨架,推动照明物联网向城市物联网演进。
图6 智慧照明解决方案架构图
本文来自:浙江省电力学会
本文关键词:边缘计算的就业前景,边缘计算的前景,边缘计算市场前景,边缘计算技术前景分析,边缘计算三大技术。这就是关于《边缘计算技术前景,边缘计算步入“黄金年代”》的所有内容,希望对您能有所帮助!