您当前的位置:首页 > 指南 > 正文

什么是无理数?包括哪些数? 什么是无理数

导读: 今天来聊聊关于什么是无理数?包括哪些数?,什么是无理数的文章,现在就为大家来简单介绍下什么是无理数?包括哪些数?,什么是无理数,希望对...

今天来聊聊关于什么是无理数?包括哪些数?,什么是无理数的文章,现在就为大家来简单介绍下什么是无理数?包括哪些数?,什么是无理数,希望对各位小伙伴们有所帮助。

1、什么是无理数无理数,即非有理数之实数,不能写作两整数之比。

2、若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。

3、 常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等。

4、无理数的另一特征是无限的连分数表达式。

5、传说中,无理数最早由毕达哥拉斯学派弟-子希伯斯发现。

6、他以几何方法证明无法用整数及分数表示。

7、而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在。

8、但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知识外泄一事触犯学派章程——因而被处死,其罪名等同于“渎神”。

9、 无理数是无限不循环小数和开方开不尽的数. 如圆周率、√2(根号2)等。

10、 有理数是所有的分数,整数,它们都可以化成有限小数,或无限循环小数。

11、如22/7等。

12、 实数(real number)分为有理数和无理数(irrational number)。

13、 有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数) 也可分为正有理数,0,负有理数。

14、 除了无限不循环小数以外的数统称有理数。

15、 把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0, 4/5=0.8, 1/3=0.33333……而无理数只能写成无限不循环小数, 比如√2=1.414213562…………根据这一点,人们把无理数定义为无限不循环小数。

16、 2、无理数不能写成两整数之比。

17、 利用有理数和无理数的主要区别,可以证明√2是无理数。

18、 证明:假设√2不是无理数,而是有理数。

19、 既然√2是有理数,它必然可以写成两个整数之比的形式: √2=p/q 再假设p和q没有公因数可以约,所以可以认为p/q 为最简分数,即最简分数形式。

20、 把 √2=p/q 两边平方 得 2=(p^2)/(q^2) 即 2(q^2)=p^2 由于2q^2是偶数,p 必定为偶数,设p=2m 由 2(q^2)=4(m^2) 得 q^2=2m^2 同理q必然也为偶数,设q=2n 既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是最简分数矛盾。

21、这个矛盾是由假设√2是有理数引起的。

22、因此√2是无理数。

23、 1.判断a√b是否无理数(a,b是整数) 若a√b是有理数,它必然可以写成两个整数之比的形式: a√b=c/d(c/d是最简分数) 两边a次方得b=c^a/d^a 即c^a=b*(d^a)c^a一定是b的整数倍,设c^a=b^n*p 同理b*(d^a) 必然也为b的整数倍,设b*(d^a)=b*(b^m*q). 其中p和q都不是b的整数倍 左边b的因子数是a的倍数,要想等式成立,右边b的因子数必是a的倍数,推出当且仅当b是完全a次方数,a√b才是有理数,否则为无理数。

相信通过什么是无理数这篇文章能帮到你,在和好朋友分享的时候,也欢迎感兴趣小伙伴们一起来探讨。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 阴阳师现世召唤必出sp 阴阳师帚神现世信物

下一篇: 马汉最初是在什么研究的基础上萌发了海权论思想 马汉最初是在什么基础上发明海权论



推荐阅读