您当前的位置:首页 > 生活热点 > 正文

圆锥曲线张角定理(椭圆张角定理)

各位网友们好,相信很多人对圆锥曲线张角定理都不是特别的了解,因此呢,今天就来为大家分享下关于圆锥曲线张角定理以及椭圆张角定理的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

本文目录一览

1、圆锥曲线的定义、概念与定理

2、圆锥曲线所有定理

圆锥曲线的定义、概念与定理

  圆锥曲线包括椭圆,抛物线,双曲线。那么你对圆锥曲线的定义了解多少呢?以下是由我整理关于圆锥曲线的定义的内容,希望大家喜欢!

  圆锥曲线的定义

  几何观点

  用一个平面去截一个二次锥面,得到的交线就称为圆锥曲线(conic sections)。

  通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形。具体而言:

  1) 当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。

  2) 当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

  3) 当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。

  4) 当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。

  5) 当平面只与二次锥面一侧相交,且过圆锥顶点,结果为一点。

  6) 当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。

  7) 当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

  代数观点

  在笛卡尔平面上,二元二次方程 的图像是圆锥曲线。根据判别式的不同,也包含了椭圆、双曲线、抛物线以及各种退化情形。

  焦点--准线观点

  (严格来讲,这种观点下只能定义圆锥曲线的几种主要情形,因而不能算是圆锥曲线的定义。但因其使用广泛,并能引导出许多圆锥曲线中重要的几何概念和性质)。

  给定一点P,一直线L以及一非负实常数e,则到P的距离与L距离之比为e的点的轨迹是圆锥曲线。

  根据e的范围不同,曲线也各不相同。具体如下:

  1) e=0,轨迹为圆(椭圆的特例);

  2) e=1(即到P与到L距离相同),轨迹为抛物线 ;

  3) 0<e<1,轨迹为椭圆;

  4) e>1,轨迹为双曲线的一支。

  圆锥曲线的概念

  (以下以纯几何方式叙述主要的圆锥曲线 的概念和性质,由于大部分性质是在焦点-准线观点下定义的,对于更一般的退化情形,有些概念可能不 用。)

  考虑焦点--准线观点下的圆锥曲线定义。定义中提到的定点,称为圆锥曲线的焦点;定直线称为圆锥曲线的准线;固定的常数(即圆锥曲线上一点到焦点与准线的距离比值)称为圆锥曲线的离心率;焦点到准线的距离称为焦准距;焦点到曲线上一点的线段称为焦半径。过焦点、平行于准线的直线与圆锥曲线相交于两点,此两点间的线段称为圆锥曲线的通径,物理学中又称为正焦弦。

  圆锥曲线是光滑的,因此有切线和法线的概念。

  类似圆,与圆锥曲线交于两点的直线上两交点间的线段称为弦;过焦点的弦称为焦点弦。

  对于同一个椭圆或双曲线,有两个“焦点-准线”的组合可以得到它。因此,椭圆和双曲线有两个焦点和两条准线。而抛物线只有一个焦点 条准线。

  圆锥曲线关于过焦点与准线垂直的直线对称,在椭圆和双曲线的情况,该直线通过两个焦点,该直线称为圆锥曲线的焦轴。对于椭圆和双曲线,还关于焦点连线的垂直平分线对称。

  Pappus定理:圆锥曲线上一点的焦半径长度等于该点到相应准线的距离乘以离心率。

  Pascal定理:圆锥曲线的内接六边形,若对边两两不平行,则该六边形对边延长线的交点共线。(对于退化的情形也 用)

  Brianchon定理:圆锥曲线的外切六边形,其三条对角线共点。

  圆锥曲线的定理

  由比利时数学家G.F.Dandepn 1822年得出的冰淇淋定理证明了圆锥曲线几何定义与焦点-准线定义的等价性。

  即有一以Q为顶点的圆锥(蛋筒),有一平面π'(你也可以说是饼干)与其相截得到了圆锥曲线,作球与平面π'及圆锥相切,在曲线为椭圆或双曲线时平面与球有两个切点,抛物线只有一个(或者另一个在无穷远处),则切点为焦点。又球与圆锥之交为圆,设以此圆所在平面π与π'之交为直线d(曲线为圆时d为无穷远线),则d为准线。

  图只画了椭圆,证明对抛物线双曲线都 用,即证,任一个切点为焦点,d为准线。

  证:假设P为曲线上一点,联线PQ交圆O于E。设平面π′与π的交角为α,圆锥的母线(如PQ)与平面π的交角为β。设P到平面π 的垂足为H,H到直线d的垂足为R,则PR为P到d的垂线(三垂线定理),而∠PRH=α。 PE、PF同为圆球之切线,得PE=PF。

  如此则有:PR·sinα=PE·sinβ=PF·sinβ=PH

  其中:PF/PR=sinα/sinβ为常数。


圆锥曲线所有定理

1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。   2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。   3. 抛物线:到一个定点 条定直线的距离相等的动点轨迹叫做抛物线。性质:1)椭圆  参数方程:X=acosθ Y=bsinθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1  2)双曲线  参数方程:x=asecθ y=btanθ (θ为参数 )  直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)  3)抛物线  参数方程:x=2pt^2 y=2pt (t为参数)  直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )  圆锥曲线(二次非圆曲线)的 极坐标方程为  ρ=ep/(1-e×cosθ)  其中e表示离心率,p为焦点到准线的距离。   焦点到最近的准线的距离等于ex±a   圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a)  椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。  |PF1|=a+ex |PF2|=a-ex  双曲线:  P在左支,|PF1|=-a-ex |PF2|=a-ex  P在右支,|PF1|=a+ex |PF2|=-a+ex  P在下支,|PF1|= -a-ey |PF2|=a-ey  P在上支,|PF1|= a+ey |PF2|=-a+ey  圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2  即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x)  圆锥曲线中求点的轨迹方程  在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种 的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 未来的交通工具作文400字六年级(未来的交通工具作文300字二年级)

下一篇: 家长希望与建议简单的写几句(家长感想与建议简短)



推荐阅读