您当前的位置:首页 > 生活热点 > 正文

高一数学函数顺口溜(高一数学顺口溜大全集)

大家好,本篇文章为大家解答以上问题,相信很多人对高一数学函数顺口溜都不是特别的了解,因此呢,今天就来为大家分享下关于高一数学函数顺口溜以及高一数学顺口溜大全集的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

本文目录一览

1、高中数学知识点顺口溜速记口诀2、数学三角函数记忆顺口溜

高中数学知识点顺口溜速记口诀

做数学题的时候你会不会有时就把公式定理忘了呢?其实将这些公式定理编为 顺口溜 可能会更好记!下面是我整理的高中数学知识点顺口溜速记口诀,希望大家喜欢。

函数学习口诀

正比例函数是直线,图象一定过原点,

k的正负是关键,决定直线的象限,

负k经过二四限,x增大y在减,

上下平移k不变,由引得到一次线,

向上加b向下减,图象经过三个限,

两点决定一条线,选定系数是关键。

反比例函数双曲线,待定只需一个点,

正k落在一三限,x增大y在减,

图象上面任意点,矩形面积都不变,

对称轴是角分线,x、y的顺序可交换。

二次函数抛物线,选定需要三个点,

a的正负开口判,c的大小y轴看,

△的符号最简便,x轴上数交点,

a、b同号轴左边,抛物线平移a不变,

顶点牵着图象转,三种形式可变换,

配 方法 作用最关键。

正多边形诀窍歌

份相等分割圆,n值必须大于三,

依次连接各分点,内接正n边形在眼前。

经过分点做切线,切线相交n个点。

n个交点做顶点,外切正n边形便出现。

正n边形很美观,它有内接、外切圆,

内接、外切都唯一,两圆还是同心圆,

它的图形轴对称,n条对称轴 都过圆心点,

如果n值为偶数,中心对称很方便。

正n边形做计算,边心距、半径是关键,

内切、外接圆半径,边心距、半径分别换,

分成直角三角形2n个整,依此计算便简单。

圆中比例线段

遇等积,改等比,横找竖找定相似;

不相似,别生气,等线等比来代替,

遇等比,改等积,引用射影和圆幂,

平行线,转比例,两端各自找联系。

函数与数列

数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开;

变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

二项式定理

二项乘方知多少,万里源头通项找;

展开三定项指系,组合系数杨辉角。

整除证明底变妙,二项求和特值巧;

两端对称谁最大?主峰一览众山小。

立体几何

多点共线两面交,多线共面一法巧;

空间三垂优弦大,球面两点劣弧小。

线线关系线面找,面面成角线线表;

等积转化连射影,能割善补架通桥。

方程与不等式

函数方程不等根,常使参数范围生;

一正二定三相等,均值定理最值成。

参数不定比大小,两式不同三法证;

等与不等无绝对,变量分离方有恒。

根据多年的实践, 总结 规律腊尺繁化简;

概括知识难变易,高中数学巧记忆。

言简意赅易上口,结合课本胜一筹。

始生之物形必丑,抛砖引得白玉出。

速记口诀

一、《集合与函数》

内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,

若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,

偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;

其余函数实数集,多种情况求交集。肢皮

两个互为反函数,单调性质都相同;

图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;

反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;

函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;

图象第一象限内,函数增减看正负。

二、《三角函数》

三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都历局差需要。

正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;

向下三角平方和,倒数关系是对角,

顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,

变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,

保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,

幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,

先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,

简单三角的方程,化为最简求解集;

三、《不等式》

解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》

等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,

推论过程须详尽,归纳原理来肯定。

五、《复数》

虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,

逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》

点线面三位一体,柱锥 台球 为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

八、《平面解析几何》

有向线段直线圆,椭圆双曲抛物线,

参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,

两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;

都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,

给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;

平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

高中数学知识点顺口溜速记口诀相关 文章 :

1. 高中数学函数的学习方法

2. 高中数学重要知识点巧记口诀

3. 高中数学知识点口诀

4. 高中数学常考题型答题技巧与方法及顺口溜

5. 十个重要地理口诀记忆规律

6. 高中数学3个解题技巧口诀与数学学习方法

7. 高二数学学习方法之巧记口诀

8. 2017驾考科一的顺口溜大全

9. 最新高中物理知识点记忆口诀

数学三角函数记忆顺口溜

三角函数是数学中比较重要的知识内容,下面为大家总结了三角函数记忆顺口溜,仅供大家参考。

三角函数记忆顺口溜

三角定义比值生,弧度互化实数融;

同角三类善诱导,和差倍塌悉半巧变通。

解前若能三平衡,解后便有一脉承;

角值计算大化小,弦切相逢异化同。

三角函数记忆口诀

奇变偶不变,符号看象限。

“奇、偶”指的是π/2的倍数的奇偶,“大衫前变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余滚清切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。

以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。


声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,谢谢。

上一篇: 体香是怎么形成的,体香的来源

下一篇: 苹果公司总部(上海苹果公司总部大楼)



推荐阅读