您好,今天帅帅来为大家解答以上的问题。密铺是什么意思在数学中,密铺是什么意思相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌。
2、 正六边形可以密铺,因为它的每个内角都是120度,在每个拼接点处恰好能容纳3个内角;正五边形不可以密铺,因为它的每个内角都是108度,而360不是108的整数倍,在每个拼接点处的内角不能保证没空隙或重叠现象;除正三角形、正四边形和正六边形外,其它正多边形都不可以密铺平面。
3、 街道两旁的道路常常用一些几何图案的砖铺成,地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。
4、无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,这就是密铺。
5、 我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。
6、如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个360度的周角。
7、正六边形的每个角都是120度, 3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是360度。
8、除了正方形、长方形以外,正三角形也能把地面密铺。
9、因为正三角形的每个内角都是60度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是360度。
10、 正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是360度,这就保证了能把地面密铺,而且还比较美观。
11、 用正三角形(等边三角形)与正方形可以密铺,它每一顶点处有 3 个正三角形(等边三角形)与 2 个正方形。
12、 2、用正三角形(等边三角形)与正六边形也可以密铺,它每一顶点处有 2 个正三角形与 2 个正六边形或4个正三角形与1个正六边形。
13、 3、用正方形与正八边形也可以密铺,它每一顶点处有 1 个正方形与 2 个正八边形。
14、 4, 梯形也可以密铺,菱形也可以密铺。
15、 5.正三角形、正四边形、正六边形可以单独密铺。
本文就为大家分享到这里,希望小伙伴们会喜欢。